Ulm News, 14.11.2018 18:00
Automatische Aufmerksamkeitserkennung: Wie erkennt der Computer, wenn der Mensch innerlich abschaltet? -
Beschreibung: Fedotov Dmitrii, Doktorand am Institut für Communcations Engineering der Universität Ulm;
Lizenz: © copyright
Fotograf: Andrea Weber-Tuckermann
Lizenz: © copyright
Der Mensch hat ein untrügliches Gespür dafür, ob sein Gegenüber ihm aufmerksam zuhört oder nicht. Denn die menschliche Mimik, Gestik und Körpersprache ist ziemlich aufschlussreich, zumindest für den Menschen. Forscher aus Ulm und Moskau haben untersucht, mit welchen Merkmalen ein Computer die Aufmerksamkeit von Menschen in Gesprächssituationen am besten erfassen kann.
Trainiert wurde das System mit mehr als 26 000 Videofragmenten. Das Ergebnis: der Zuhörer verrät mit seinem Sprechen am meisten über sein „Engagement“, so der Fachbegriff dafür. Die automatische Gefühlserkennung, im Englischen spricht man hier von Affective Computing, ist ein gleichermaßen innovatives und lukratives Tätigkeitsfeld der Informatik. Ob beim hochautomatisierten Fahren, in der Werbewirtschaft, der virtuellen Medizin – oder bei vielen anderen Anwendungen aus dem Bereich Mensch-Technik-Interaktion – werden bereits Programme eingesetzt, die mehr oder weniger gut in Lage sind, das menschliche Gefühlsleben zu analysieren.
Dazu gehören nicht nur die Parameter der emotionalen Befindlichkeit, sondern auch die der Aufmerksamkeit und Anteilnahme. „Wir haben nun untersucht, welche Merkmale und Methoden für den Computer am aufschlussreichsten sind, um herauszufinden, ob Menschen in einer Zuhörersituation aktiv involviert sind oder nicht“, erklärt Dmitrii Fedotov. Der studierte Systemanalytiker promoviert bei Professor Wolfgang Minker am Institut für Communications Engineering der Universität Ulm.
Der 25-jährige ist in Krasnojarsk (Sibirien) geboren und aufgewachsen, und er hat dort an der Reshetnev Siberian State University of Science and Technology studiert. Vor zwei Jahren kam Fedotov dann von dieser hochrenommierten russischen Universität, die zu den fünf strategischen Partnerhochschulen (U5) der Universität Ulm gehört, nach Ulm. Für dieses Forschungsprojekt kooperierte Dmitrii Fedotov eng mit drei Moskauer Wissenschaftlerinnen der Firma Neurodata Lab. Das junge Unternehmen, mit Firmensitzen in Italien, der Schweiz, Russland und der USA – ist spezialisiert auf Fragen der Künstlichen Intelligenzforschung, des Affective Computing und Data Mining. Für das Forschungsprojekt hat das Neurodata Lab einen riesigen Datenkorpus aus Videomaterial auf einer sogenannten EmotionMiner Plattform zusammengestellt. Szene für Szene wurde dafür systematisch „von Hand“ gesichtet und nach bestimmten Kriterien charakterisiert. Welche Emotionen zeigen Sprecher und Zuhörer? Ist der Zuhörer aufmerksam oder unkonzentriert?
Insgesamt wurden dabei mehr als 26 000 Filmfragmente aus 981 Videos verarbeitet. Die kurzen Filmsequenzen, die rund vier Sekunden lang sind, zeigen menschliche Kommunikationssituationen und stammen aus öffentlich zugänglichen Tonfilmaufnahmen von Gesprächen, Interviews, Debatten und Talkshow, die in englischer Sprache geführt wurden. Jede Videosequenz wurde dabei von zehn menschlichen Analysten untersucht. Rund 1500 Menschen waren an der Analyse beteiligt.
Und wozu der ganze Aufwand? „Man braucht diese von Menschen erhobenen Daten als Referenzdaten, um später herauszufinden, wie genau der Computer in der Lage ist, menschliche Gefühle und mentale Zustände zu erfassen“, erklärt Olga Perepelkina.
Die Psychologin ist Chief Research Officer bei Neurodata Lab und war gemeinsam mit Evdokia Kazimirova und Maria Konstantinova an diesem deutsch-russischen Gemeinschaftsprojekt beteiligt. Alle drei Wissenschaftlerinnen promovieren zudem an der Lomonosov Moscow State University (MSU) im Bereich Psychologie. Die eigentliche Herausforderung besteht in der technischen Umsetzung für die automatische Emotions- bzw. Aufmerksamkeitserfassung selbst. Wie bekommt man den Computer dazu, sich anhand des Videomaterials ein Bild davon zu machen, ob ein dort gezeigter Mensch ein aktiver Zuhörer oder eher unbeteiligt ist? Die Wissenschaftler benutzen hierfür das Begriffspaar Engagement - Disengageme
nt, um das Ausmaß der mentalen Involvierung zu erfassen. Für die automatische Aufmerksamkeitserkennung haben sich in den letzten Jahren mehrere Verfahren etabliert, um mimische und gestische Hinweise sowie Körperhaltungen zu erfassen.
Vereinfacht ausgedrückt werden hier Lippen- oder Augenbewegungen untersucht sowie Gesichtsausdrücke oder die emotionale Färbung gesprochener Sprache („Audio“-Faktor). Präziser gesagt geht es hier um den Einsatz von Software-Werkzeugen, die beispielsweise in der Lage sind, in Videosequenzen die Emotionen von Sprecher und Hörer automatisch zu analysieren. Oder es handelt sich um Algorithmen, die in der Lage sind, aus der Bewegung der Lippen die Wahrscheinlichkeit zu berechnen, mit der im nächsten Moment jemand zu sprechen beginnt. Allein für die Gesichtserkennung haben die Forscher ein neuronales Netzwerk mit den Bilddaten von mehr als 10 000 Gesichtern gefüttert. „Wir wollten nun herausfinden, welche Kombination an Modalitäten bei der automatischen Aufmerksamkeitserfassung am effektivsten ist“, so Fedotov. Der Ulmer Wissenschaftler hat dafür alle möglichen Zwei- und Dreifachkombinationen von fünf verschiedenen Erkennungsweisen (Augen, Lippen, Gesicht, Körper und Audio) statistisch kombiniert. Das Ergebnis: Am effektivsten im Verhältnis zum Aufwand erwies sich dabei die Zweierkombination aus „Lippen“ und „Audio“. Gut 70 Prozent aller Fälle lassen sich damit richtig zuordnen; ein Ergebnis, das für die automatisierte Aufmerksamkeitserkennung richtig gut ist. „Beide Merkmale sind direkt mit dem Akt des Sprechens verbunden. Dabei war die Erklärungskraft des „Audio“-Faktors alleine bereits beträchtlich. Für die Praxis heißt dies, dass eine automatische Aufmerksamkeitserkennung, die sich auf die auditiven Merkmale der gesprochenen Sprache konzentriert – Stimmqualität, Tonspektrum, Stimmenergie, Sprachfluss und Tonhöhe – ausreicht, um zuverlässig zu sagen, ob der Zuhörer aufmerksam ist. Wenn der Zuhörer schweigt, helfen andere Merkmale wie Gesichts- und Körperbewegungen dabei, „Engagement“ oder „Disengagement“ zu erkennen. Vorgestellt wurde die Studie im Herbst auf einer großen internationalen Konferenz (ICMI 2018) in Boulder, Colorado.
Highlight
Weitere Topevents
Heimsiiiiiiiieg: die Spatzen holen ihren ersten und damit gegen Braunschweig wichtige Punkte
Der SSV Ulm 1846 Fussball besiegte Eintracht Braunschweig am Freitagabend vor heimischer Kulisse völlig...weiterlesen
Schlangestehen im Regen für einen 1-Cent-Döner
Einen Döner für einen Cent. Das war die Aktion einer Döner-Kette zur Eröffnung in Ulm. Die...weiterlesen
Schießerei in Bar: Ein Gast tot, zwei Gäste verletzt
bei einer Schießerei in einer Bar in der Göppinger Innenstadt sind drei Gäste verletzt worden. Ein Gast...weiterlesen
Winterzauber 2024 diesmal oben auf dem Berg im „Techpark“
Und von den Bergen grüßt... der Winterzauber 2024, in diesem Fall vom Eselsberg Ulm. Dabei legen die...weiterlesen
Unfall mit Straßenbahn und einem Schwerverletzten
Ein 62-jähriger Autofahrer erlitt bei einer Kollision mit einer Straßenbahn in Ulm schwere Verletzungen. weiterlesen
Durch die Straßen der Doppelstadt – der Einstein-Marathon mit über 12.000 Läufern – würdig für die 20. Jubiläumsausgabe
Es läuft - in 20 Jahren ist die Lauf-Bewegung in und um Ulm enorm gewachsen. Die Organisatoren vom Sun...weiterlesen
Cube Store Ulm eröffnet mit Rabatten auf alle Bikes
Lage perfekt: direkt an der Autobahnausfahrt A8 / Ulm Nord.
Hey, Cube ist einer der größten...weiterlesen
Täter ist weiterhin auf der Flucht - Polizei schließt Bandenkrieg nicht mehr aus -
In einer gemeinsame Pressemitteilung von Staatsanwaltschaft Ulm und Polizei koonkretisieren beide die...weiterlesen